Copied to
clipboard

G = C23.Dic14order 448 = 26·7

6th non-split extension by C23 of Dic14 acting via Dic14/C14=C22

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C23.6Dic14, M4(2).30D14, C28.37(C4⋊C4), (C2×C28).28Q8, (C2×C28).483D4, C28.441(C2×D4), C4.Dic7.6C4, C28.68(C22×C4), (C2×C4).16Dic14, C28.53D413C2, (C22×C14).16Q8, C72(M4(2).C4), C4.21(Dic7⋊C4), (C2×C28).415C23, (C22×C4).134D14, (C2×M4(2)).16D7, C22.4(C2×Dic14), (C14×M4(2)).27C2, C4.Dic7.41C22, C22.17(Dic7⋊C4), (C22×C28).183C22, (C7×M4(2)).33C22, C7⋊C8.5(C2×C4), C4.90(C2×C4×D7), C14.52(C2×C4⋊C4), (C2×C4).49(C4×D7), C4.131(C2×C7⋊D4), (C2×C14).11(C2×Q8), (C2×C14).54(C4⋊C4), (C2×C28).103(C2×C4), (C2×C7⋊C8).143C22, C2.19(C2×Dic7⋊C4), (C2×C4).194(C7⋊D4), (C2×C4).511(C22×D7), (C2×C4.Dic7).24C2, SmallGroup(448,658)

Series: Derived Chief Lower central Upper central

C1C28 — C23.Dic14
C1C7C14C28C2×C28C2×C7⋊C8C2×C4.Dic7 — C23.Dic14
C7C14C28 — C23.Dic14
C1C4C22×C4C2×M4(2)

Generators and relations for C23.Dic14
 G = < a,b,c,d,e | a2=b2=c2=1, d28=c, e2=bd14, ab=ba, eae-1=ac=ca, ad=da, dbd-1=bc=cb, be=eb, cd=dc, ce=ec, ede-1=bcd27 >

Subgroups: 292 in 102 conjugacy classes, 59 normal (39 characteristic)
C1, C2, C2, C4, C22, C22, C7, C8, C2×C4, C23, C14, C14, C2×C8, M4(2), M4(2), C22×C4, C28, C2×C14, C2×C14, C8.C4, C2×M4(2), C2×M4(2), C7⋊C8, C7⋊C8, C56, C2×C28, C22×C14, M4(2).C4, C2×C7⋊C8, C2×C7⋊C8, C4.Dic7, C4.Dic7, C2×C56, C7×M4(2), C7×M4(2), C22×C28, C28.53D4, C2×C4.Dic7, C14×M4(2), C23.Dic14
Quotients: C1, C2, C4, C22, C2×C4, D4, Q8, C23, D7, C4⋊C4, C22×C4, C2×D4, C2×Q8, D14, C2×C4⋊C4, Dic14, C4×D7, C7⋊D4, C22×D7, M4(2).C4, Dic7⋊C4, C2×Dic14, C2×C4×D7, C2×C7⋊D4, C2×Dic7⋊C4, C23.Dic14

Smallest permutation representation of C23.Dic14
On 112 points
Generators in S112
(57 85)(58 86)(59 87)(60 88)(61 89)(62 90)(63 91)(64 92)(65 93)(66 94)(67 95)(68 96)(69 97)(70 98)(71 99)(72 100)(73 101)(74 102)(75 103)(76 104)(77 105)(78 106)(79 107)(80 108)(81 109)(82 110)(83 111)(84 112)
(2 30)(4 32)(6 34)(8 36)(10 38)(12 40)(14 42)(16 44)(18 46)(20 48)(22 50)(24 52)(26 54)(28 56)(58 86)(60 88)(62 90)(64 92)(66 94)(68 96)(70 98)(72 100)(74 102)(76 104)(78 106)(80 108)(82 110)(84 112)
(1 29)(2 30)(3 31)(4 32)(5 33)(6 34)(7 35)(8 36)(9 37)(10 38)(11 39)(12 40)(13 41)(14 42)(15 43)(16 44)(17 45)(18 46)(19 47)(20 48)(21 49)(22 50)(23 51)(24 52)(25 53)(26 54)(27 55)(28 56)(57 85)(58 86)(59 87)(60 88)(61 89)(62 90)(63 91)(64 92)(65 93)(66 94)(67 95)(68 96)(69 97)(70 98)(71 99)(72 100)(73 101)(74 102)(75 103)(76 104)(77 105)(78 106)(79 107)(80 108)(81 109)(82 110)(83 111)(84 112)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112)
(1 85 15 99 29 57 43 71)(2 112 44 98 30 84 16 70)(3 111 17 69 31 83 45 97)(4 82 46 68 32 110 18 96)(5 81 19 95 33 109 47 67)(6 108 48 94 34 80 20 66)(7 107 21 65 35 79 49 93)(8 78 50 64 36 106 22 92)(9 77 23 91 37 105 51 63)(10 104 52 90 38 76 24 62)(11 103 25 61 39 75 53 89)(12 74 54 60 40 102 26 88)(13 73 27 87 41 101 55 59)(14 100 56 86 42 72 28 58)

G:=sub<Sym(112)| (57,85)(58,86)(59,87)(60,88)(61,89)(62,90)(63,91)(64,92)(65,93)(66,94)(67,95)(68,96)(69,97)(70,98)(71,99)(72,100)(73,101)(74,102)(75,103)(76,104)(77,105)(78,106)(79,107)(80,108)(81,109)(82,110)(83,111)(84,112), (2,30)(4,32)(6,34)(8,36)(10,38)(12,40)(14,42)(16,44)(18,46)(20,48)(22,50)(24,52)(26,54)(28,56)(58,86)(60,88)(62,90)(64,92)(66,94)(68,96)(70,98)(72,100)(74,102)(76,104)(78,106)(80,108)(82,110)(84,112), (1,29)(2,30)(3,31)(4,32)(5,33)(6,34)(7,35)(8,36)(9,37)(10,38)(11,39)(12,40)(13,41)(14,42)(15,43)(16,44)(17,45)(18,46)(19,47)(20,48)(21,49)(22,50)(23,51)(24,52)(25,53)(26,54)(27,55)(28,56)(57,85)(58,86)(59,87)(60,88)(61,89)(62,90)(63,91)(64,92)(65,93)(66,94)(67,95)(68,96)(69,97)(70,98)(71,99)(72,100)(73,101)(74,102)(75,103)(76,104)(77,105)(78,106)(79,107)(80,108)(81,109)(82,110)(83,111)(84,112), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112), (1,85,15,99,29,57,43,71)(2,112,44,98,30,84,16,70)(3,111,17,69,31,83,45,97)(4,82,46,68,32,110,18,96)(5,81,19,95,33,109,47,67)(6,108,48,94,34,80,20,66)(7,107,21,65,35,79,49,93)(8,78,50,64,36,106,22,92)(9,77,23,91,37,105,51,63)(10,104,52,90,38,76,24,62)(11,103,25,61,39,75,53,89)(12,74,54,60,40,102,26,88)(13,73,27,87,41,101,55,59)(14,100,56,86,42,72,28,58)>;

G:=Group( (57,85)(58,86)(59,87)(60,88)(61,89)(62,90)(63,91)(64,92)(65,93)(66,94)(67,95)(68,96)(69,97)(70,98)(71,99)(72,100)(73,101)(74,102)(75,103)(76,104)(77,105)(78,106)(79,107)(80,108)(81,109)(82,110)(83,111)(84,112), (2,30)(4,32)(6,34)(8,36)(10,38)(12,40)(14,42)(16,44)(18,46)(20,48)(22,50)(24,52)(26,54)(28,56)(58,86)(60,88)(62,90)(64,92)(66,94)(68,96)(70,98)(72,100)(74,102)(76,104)(78,106)(80,108)(82,110)(84,112), (1,29)(2,30)(3,31)(4,32)(5,33)(6,34)(7,35)(8,36)(9,37)(10,38)(11,39)(12,40)(13,41)(14,42)(15,43)(16,44)(17,45)(18,46)(19,47)(20,48)(21,49)(22,50)(23,51)(24,52)(25,53)(26,54)(27,55)(28,56)(57,85)(58,86)(59,87)(60,88)(61,89)(62,90)(63,91)(64,92)(65,93)(66,94)(67,95)(68,96)(69,97)(70,98)(71,99)(72,100)(73,101)(74,102)(75,103)(76,104)(77,105)(78,106)(79,107)(80,108)(81,109)(82,110)(83,111)(84,112), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112), (1,85,15,99,29,57,43,71)(2,112,44,98,30,84,16,70)(3,111,17,69,31,83,45,97)(4,82,46,68,32,110,18,96)(5,81,19,95,33,109,47,67)(6,108,48,94,34,80,20,66)(7,107,21,65,35,79,49,93)(8,78,50,64,36,106,22,92)(9,77,23,91,37,105,51,63)(10,104,52,90,38,76,24,62)(11,103,25,61,39,75,53,89)(12,74,54,60,40,102,26,88)(13,73,27,87,41,101,55,59)(14,100,56,86,42,72,28,58) );

G=PermutationGroup([[(57,85),(58,86),(59,87),(60,88),(61,89),(62,90),(63,91),(64,92),(65,93),(66,94),(67,95),(68,96),(69,97),(70,98),(71,99),(72,100),(73,101),(74,102),(75,103),(76,104),(77,105),(78,106),(79,107),(80,108),(81,109),(82,110),(83,111),(84,112)], [(2,30),(4,32),(6,34),(8,36),(10,38),(12,40),(14,42),(16,44),(18,46),(20,48),(22,50),(24,52),(26,54),(28,56),(58,86),(60,88),(62,90),(64,92),(66,94),(68,96),(70,98),(72,100),(74,102),(76,104),(78,106),(80,108),(82,110),(84,112)], [(1,29),(2,30),(3,31),(4,32),(5,33),(6,34),(7,35),(8,36),(9,37),(10,38),(11,39),(12,40),(13,41),(14,42),(15,43),(16,44),(17,45),(18,46),(19,47),(20,48),(21,49),(22,50),(23,51),(24,52),(25,53),(26,54),(27,55),(28,56),(57,85),(58,86),(59,87),(60,88),(61,89),(62,90),(63,91),(64,92),(65,93),(66,94),(67,95),(68,96),(69,97),(70,98),(71,99),(72,100),(73,101),(74,102),(75,103),(76,104),(77,105),(78,106),(79,107),(80,108),(81,109),(82,110),(83,111),(84,112)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112)], [(1,85,15,99,29,57,43,71),(2,112,44,98,30,84,16,70),(3,111,17,69,31,83,45,97),(4,82,46,68,32,110,18,96),(5,81,19,95,33,109,47,67),(6,108,48,94,34,80,20,66),(7,107,21,65,35,79,49,93),(8,78,50,64,36,106,22,92),(9,77,23,91,37,105,51,63),(10,104,52,90,38,76,24,62),(11,103,25,61,39,75,53,89),(12,74,54,60,40,102,26,88),(13,73,27,87,41,101,55,59),(14,100,56,86,42,72,28,58)]])

82 conjugacy classes

class 1 2A2B2C2D4A4B4C4D4E7A7B7C8A8B8C8D8E···8L14A···14I14J···14O28A···28L28M···28R56A···56X
order122224444477788888···814···1414···1428···2828···2856···56
size1122211222222444428···282···24···42···24···44···4

82 irreducible representations

dim11111222222222244
type+++++--+++--
imageC1C2C2C2C4D4Q8Q8D7D14D14Dic14C4×D7C7⋊D4Dic14M4(2).C4C23.Dic14
kernelC23.Dic14C28.53D4C2×C4.Dic7C14×M4(2)C4.Dic7C2×C28C2×C28C22×C14C2×M4(2)M4(2)C22×C4C2×C4C2×C4C2×C4C23C7C1
# reps14218211363612126212

Matrix representation of C23.Dic14 in GL4(𝔽113) generated by

1000
0100
6101120
6500112
,
1000
2811200
0010
6500112
,
112000
011200
001120
000112
,
21600
10911100
4936056
3468640
,
4401060
750151
850690
9015550
G:=sub<GL(4,GF(113))| [1,0,61,65,0,1,0,0,0,0,112,0,0,0,0,112],[1,28,0,65,0,112,0,0,0,0,1,0,0,0,0,112],[112,0,0,0,0,112,0,0,0,0,112,0,0,0,0,112],[2,109,49,34,16,111,36,68,0,0,0,64,0,0,56,0],[44,75,85,90,0,0,0,15,106,15,69,55,0,1,0,0] >;

C23.Dic14 in GAP, Magma, Sage, TeX

C_2^3.{\rm Dic}_{14}
% in TeX

G:=Group("C2^3.Dic14");
// GroupNames label

G:=SmallGroup(448,658);
// by ID

G=gap.SmallGroup(448,658);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-7,112,477,422,58,136,438,102,18822]);
// Polycyclic

G:=Group<a,b,c,d,e|a^2=b^2=c^2=1,d^28=c,e^2=b*d^14,a*b=b*a,e*a*e^-1=a*c=c*a,a*d=d*a,d*b*d^-1=b*c=c*b,b*e=e*b,c*d=d*c,c*e=e*c,e*d*e^-1=b*c*d^27>;
// generators/relations

׿
×
𝔽